Nowadays businesses produce, collect and use more data than ever before, as they harness a very wide array of data sources. The later sources range from business information systems and corporate databases to IoT (Internet of Things) sensors and social media. By properly analyzing these data, enterprises can turn raw information into business insights that boost the effectiveness of their business processes and of their managerial decision-making. This is the reason why modern enterprises are heavily investing in emerging technologies and solutions for advanced data analytics. Specifically, they seek solutions that are highly automated and effective in extracting business knowledge from a variety of structured, unstructured, and semi-structured data sources. Automation is a very desirable property given that it is practically impossible for humans to structure, process, and identify knowledge patterns within such extreme amounts of data. In this context, businesses are increasingly turning to Machine Learning (ML) in order to automate their data analysis and knowledge extraction processes.
Machine Learning is one of the most popular ways to mine large amounts of data. ML programs can automatically identify knowledge patterns in historical datasets, without being explicitly programmed based on specific knowledge extraction rules. Rather ML programs are able to learn the rules that will drive their operation. Specifically, ML programs are usually trained based on past data as a means of extracting the rules that enable them to process new (previously unseen) data. ML’s popularity is evident in the rapid growth of the ML market: According to a recent market analysis report, the global machine learning market size amounted to USD 6.9 billion in 2018 and is expected to reach USD 96.7 billion by 2025. Note also that ML is one of the most popular segments of Artificial Intelligence (AI), as well as one of the most prominent ways modern businesses leverage AI-based cutting-edge technology.
There are tens of different ML models and algorithms, which are suited for a variety of problems. Nevertheless, leveraging ML within comprehensive and effective business solutions is a challenging task. The design, development, and evaluation of ML models is a multi-disciplinary process, which requires teams with IT, databases, statistics, and visualization skills. Furthermore, there is always a need for engaging domain experts that contribute the ever-important domain knowledge. The latter is typically required to validate the soundness of the findings of the ML programs. Typical ML analytics operations in a business context include:
There is a variety of machine learning techniques that are based on mathematical logic and well-known statistical theories like decision trees, random forests, and models based on Bayesian statistics. Furthermore, neural networks are used to identify complex patterns of knowledge on past data, given that they operate based on principles of biological neurons and like the brains of animals. All the above-listed methods are usually characterized as traditional machine learning.
In recent years, there is also a surge of interest in a special class of ML techniques, namely Deep Learning (DL) models and algorithms. DL models are based on deep neural networks, which feature many layers of neurons. The business interest in deep learning is largely because deep neural networks exhibit much better performance than traditional methods when large volumes of historical data are available. Therefore, the proliferation of the amount of available business data makes DL preferable over traditional DL.
One more class of ML techniques is Reinforcement Learning (RL). RL employs a different learning paradigm: It trains a software program (i.e. a machine learning agent) through rewarding it for desired (i.e., correct) behaviors and penalizing it for undesired (i.e., wrong) ones. The process is based on a trial-and-error paradigm, which leads the RL to learn what is good to do and what must be avoided. RL is used in special types of applications like robotics and gaming.
With so many ML techniques and tools at hand, modern businesses are provided with unprecedented opportunities to develop advanced analytics technologies that improve their competitiveness and help them improve their business results. Here are some prominent examples of business applications in various sectors:
The above list of use cases is non-exhaustive. ML disrupts entire sectors based on a variety of use cases. Therefore, enterprises cannot afford to ignore this emerging technology. Rather they must invest in business modeling and data science services towards producing ML solutions that give an essential boost to their business results.
Active (Machine) Learning: Leveraging Human Experience to Improve AI
Neuro-Symbolic Learning Explained
AI Regulatory Initiatives Around the World: An Overview
The First Insights on ChatGPT and Generative AI Impact on Productivity
Benefits of AI and Metaverse Integration
Trading Data as NFTs: The basics you need to know
Digital Platforms for a Circular Economy
No obligation quotes in 48 hours. Teams setup within 2 weeks.
If you are a Service Provider looking to register, please fill out this Information Request and someone will get in touch.
Outsource with Confidence to high quality Service Providers.
Enter your email id and we'll send a link to reset your password to the address we have for your account.
The IT Exchange service provider network is exclusive and by-invite. There is no cost to get on-board; if you are competent in your areas of focus, then you are welcome. As a part of this exclusive network you: